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MECHANICAL WAVES

Waves and their properties: A wave is any disturbance v=Af 115.1 Waye

that propagates from one region to another. A mechani- e > s'::ﬂj

cal wave travels within some material called the . Wavelength d 7 e

medium. The wave speed v depends on the type of ! ¥ 3

wave and the properties of the medium. 2 _:"" ! \\-
In a periodic wave, the motion of each point of the Ampliade A Each particle of

medium is periodic with frequency fand period T. The :;:F::];:I‘_'“'m‘

wavelength A is the distance over which the wave pat-

tern repeats, and the amplitude A is the maximum dis-

placement of a particle in the medium. The product of A

and f equals the wave speed. A sinusoidal wave is a

special periodic wave in which each point moves in
simple harmonic motion. (See Example 15.1.)

Wawe functions and wave dynamics: The wave function T ¥
v{x, 1) describes the displacements of individual parti- yxn = Acus[ (; =L )]
cles in the medium. Equations (15.3), (15.4). and (15.7) ¥ ¥
give the wave equation for a sinusoidal wave traveling = Acos g,-,_f(f — f) [15.31
in the +x-direction. If the wave is moving in the 2 Wivelength A
—x-direction, the minus signs in the cosine functions are
replaced by plus signs. (See Example 15.2.)

The wave function obeys a partial differential equa-
tion called the wave equation, Eq. (15.12).

The speed of transverse waves on a string depends
on the lension F and mass per unit length . (See a%y(x 1) 1 @yxn
Example 15.3.) = [15.12]

9 =]

dx? v =

y(x 1) = Acuslﬂ'(% - %) [15.4)

y(x. ) = Acos(kx — wt) 115.71

where k = 2mr/Aand w = 27 = vk "l Period T

,’F
v=,/— (waves onastring) (15.131
s

Wave power: Wave motion conveys energy from one P, = 1 \/Emzﬁl 15.95) Wave power versus time 1
region to another, For a sinusoidal mechanical wave, - at coordinate x = 0

the average power F,, is proportional to the square (average power, sinusoidal wave)

of the wave amplitude and the square of the frequency. Loord

For waves that spread out in three dimensions, the e = [15.28]

wave intensity [ is inversely proportional to the h i

square of the distance from the source. (See (inverse-square law for intensity)

Examples 15.4 and 15.5.)

Wave superposition: A wave reflects when it reaches a yixt) =yl ) + va(x ) (15.27) -l

boundary of its medium. At any point where two or (principle of superposition) A

more waves overlap, the total displacement is the sum ‘_“/'5—

of the displacements of the individual waves (principle _.';"“7__

of superposition). o

Standing waves on a string: When a sinusoidal wave is y(x t) = (Agwsinkx)sinwt  (15.28) N A N

reflected from a fixed or free end of a stretched string, (standing wave on a string, L p gy ,:

the incident and reflected waves combine to form a fixedendatx = @) 2

standing sinusoidal wave with nodes and antinodes. v i 2 X 4 i

Adjacent nodes are spaced a distance A/2 apart, as are fu = "i =afs (A= 4300 L Aoy S

adjacent antinodes. (See Example 15.6.) (15.33) N A N A N A N
When both ends of a string with length L are held } E

fixed, standing waves can occur only when L is an inte- fi= JE E 115.351 ke s3=1L A

ger multiple of A/2. Each frequency with its associated AT A 1 ' N ANANANAN

vibration pattern is called a normal mode. (See (string fixed at both ends) e sA_p o

Examples 15.7 and 15.8.) =
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WAVE SUPERSOPSITION/STANDING WAVES

1/ Phasors:
Two sinusoidal waves of the same frequency travel in the same direction along a string. If
A1=3.0 cm, A>=4.0 cm, ¢ = 0,and @2= /2 rad, what is the amplitude of the resultant wave?

Phasor representation:

Ya
y,(t) = Asin(ot + @,);

{yz (t) = Asin(w,t + @,)

(O =3 O+ y,(0)

A= A7+ A7 +2A4 4, cos(Ap)

Ago:(a)z —a)l)t+(¢2 -9)

ot+

2/ A standing wave is produced by superposition of an incident and a reflected propagative
waves described by the following equations:
vi(x, ) = —Acos(kx + wi) (incident wave traveling to the left)

va(x, 1) = Acos(kx — wt) (reflected wave traveling to the right)

(a) Using the principle of superposition and the trigonometric equation:

cosa—cosbh =—2sin(a+bjsin(a_bj
2 2

demonstrate that the standing wave pattern on a string fixed at x=0 can be described by the
equation:

yv(x, t) = (Agwsinkx) sinwt
L=
with Asw =24
Graphically represent and discuss this result.
(b) Evaluating the power at a point in a string, as the product between the transverse force

and the transverse velocity of that point:

av(x. 1) dy(x, ¢
p D) )
adx at

P(x,1) = Fy(x, t)uy(x, 1) = —

and using the wave function of a standing wave, demonstrate that the average power carried
by a standing wave is zero.
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Wave =— = _yx1)
Ax ox
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(b)

3/ Adjacent antinodes of a standing wave on a string are 15.0 cm apart. A particle at an
antinode oscillates in simple harmonic motion with amplitude 0.850 cm and period 0.0750 s.
The string lies along the —axis and is fixed at x=0 (a) How far apart are the adjacent nodes?
(b) What are the wavelength, amplitude, and speed of the two traveling waves that form this
pattern? (c) Find the maximum and minimum transverse speeds of a point at an antinode. (d)
What is the shortest distance along the string between a node and an antinode?

4/ A piano tuner stretches a steel piano wire with a tension of 800 N. The steel wire is 0.400
m long and has a mass of 3.00 g. (a) What is the frequency of its fundamental mode of
vibration? (b) What is the number of the highest harmonic that could be heard by a person
who is capable of hearing frequencies up to 10000 Hz?

5/ In the following series of resonant frequencies, one frequency (lower than 400 Hz) is
missing: 150, 225, 300, 375 Hz. (a) What is the missing frequency? (b) What is the frequency
of the seventh harmonic?

6/ In Fig. below, a string, tied to a sinusoidal oscillator at P and running over a support at Q,
is stretched by a block of mass m. Separation L=1.20 m, linear density p= 1.6 g/m, and the
oscillator frequency = 120 Hz. The amplitude of the motion at P is small enough for that
point to be considered a node. A node also exists at Q. (a) What mass m allows the oscillator
to set up the fourth harmonic on the string? (b) What standing wave mode, if any, can be set
up if m = 1.00 kg?

Oscillator
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Discussion on Complex Standing Waves: Fourier analysis

If we could displace a string so that its shape is the same as one of the normal-mode patterns
and then release it, it would vibrate with the frequency of that mode. Such a vibrating string
would displace the surrounding air with the same frequency, producing a traveling sinusoidal
sound wave that your ears would perceive as a pure tone. But when a string is struck (as in a
piano) or plucked (as is done to guitar strings), the shape of the displaced string is not as
simple. The fundamental as well as many overtones are present in the resulting vibration. This
motion is therefore a combination or superposition of many normal modes. Several simple
harmonic motions of different frequencies are present simultaneously, and the displacement
of any point on the string is the sum (or superposition) of the displacements associated with
the individual modes. The sound produced by the vibrating string is likewise a superposition
of traveling sinusoidal sound waves, which you perceive as a rich, complex tone with the
fundamental frequency f1.The standing wave on the string and the traveling sound wave in
the air have similar harmonic content (the extent to which frequencies higher than the
fundamental are present). The harmonic content depends on how the string is initially set into
motion. If you pluck the strings of an acoustic guitar in the normal location over the sound
hole, the sound that you hear has a different harmonic content than if you pluck the strings
next to the fixed end on the guitar body.

It is possible to represent every possible motion of the string as some superposition of normal-
mode motions. Finding this representation for a given vibration pattern is called harmonic
analysis. The sum of sinusoidal functions that represents a complex wave is called a Fourier
series. Figure below shows how a standing wave that is produced by plucking a guitar string
of length L at a point from one end can be represented as a combination of sinusoidal
functions.

When a guitar string is plucked
. _ (pulled into a triangular shape) and
yalx. 0} = '-r-’fl'f2 V) Sl 2kyx released, a standing wave results.
y3(x, 0) = (A[9) sin 3kx The standing wave is  well
represented (except at the sharp
maximum point) by the sum of just
three sinusoidal functions. Including
Hﬁ‘\ additional  sinusoidal  functions
further improves the representation.

vy(x, 0) = Asinkx

yix, 0) = yy(x, 0} + yalx, 0) + y3(x. 0)
N N




When plucking the string, it is removed by a distance / at position d from its equilibrium
state. The shape of the string the moment it is plucked defines a function f (x) .

Y

fh_x D=sx<d
q’
flx) =
h(L —x) st |
L—d '’ -

Fourier transform:

Any smooth function f(x) has a unique representation

f(x)= Zﬂk sin (RTTx)

Where the coefficients are computed by:

A, =%Jf:f(x) sin (k?)dx

Integration by parts formula:

b

b
b
judv=[uv] —J‘vdu
a
i a
Fourier coefficients:
L d L
4 _ZJ‘ . (krrx)d ik fhx . (krrx)d fh(L—x} . (kn'xjdx
=7 f(x}smT x—z FsmT X + —d sin 7
i 0 {f
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